

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Bioorganic & Medicinal Chemistry Letters 13 (2003) 3827-3829

Structure Elucidation of Sch 538415, a Novel Acyl Carrier Protein Synthase Inhibitor from a Microorganism

Min Chu,* Ronald Mierzwa, Ling Xu, Shu-Wei Yang, Ling He, Mahesh Patel, Jill Stafford, David Macinga, Todd Black, Tze-Ming Chan and Vincent Gullo

Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA

Received 18 June 2003; accepted 23 July 2003

Abstract—A novel acyl carrier protein synthase inhibitor, Sch 538415 (1), was isolated from an unidentified bacterial microbe. Structure elucidation of 1 was accomplished based on analysis of spectroscopic data including UV, MS and 2D-NMR spectra. Compound 1 exhibited inhibitory activity in the acyl carrier protein synthase (AcpS) assay with an IC₅₀ value of 4.19 μ M and showed antibacterial activity against *Staphylococcus aureus* in the agar diffusion assay. © 2003 Elsevier Ltd. All rights reserved.

Bacterial resistance to clinically approved antibiotics continues to pose a worldwide threat to public health.¹ Emergence of resistance to 'last line' therapies, such as vancomycin, has heightened awareness and concerns about bacterial pathogens that are potentially untreatable.² A renewed sense of urgency has been invoked for the discovery and development of new classes of antibacterial drugs. Mechanism-based drug discovery approaches are being explored to identify novel antimicrobial agents that may provide alternative treatments for bacterial infections. The bacterial acyl-carrier protein synthetase (AcpS) is a bacterial-specific protein that is broadly represented in many pathogens.^{3,4} The AcpS enzyme is required for the covalent attachment of 4'-phosphopantetheine to a conserved serine residue on the apo form of the acyl-carrier protein (ACP) to generate functional holo-ACP.5,6 ACP is required for de novo fatty acid biosynthesis and acyltransferase reactions; ACP and AcpS are both required for cellular viability and inhibition of AcpS may cause bactericidal responses.⁷ A high-throughput assay has been devised for AcpS by measuring the incorporation of the radiolabeled 4'-phospho-pantetheine moiety of Coenzyme A into preparations of apo-ACP. During the process of search for novel AcpS inhibitors as potential leads for drug development, a large number of extracts from microbial sources have been tested in the high-throughput screening (HTS) program. As a result of the screening, Sch 538415 (1), has been isolated and identified from an unidentified bacterial microbe (culture #TG-10261). In this paper, we wish to report the isolation, structure elucidation and biological activity of 1 (Fig. 1).

Fermentation broth (200 mL) was extracted with ethyl acetate (2×400 mL) at harvest pH (\sim 7.2). The EtOAc layer was concentrated in vacuo to obtain \sim 64 mg of crude extract. Purification of EtOAc extract was performed on normal phase HPLC (YMC PVA-Sil semipreparative column 250×10 mm, S-5, 120 Å with a guard column 50×20 mm) using 2–10% MeOH in n-BuCl with a linear gradient for 30 min, 15 mL/min flow rate, UV detection at 220 nm. Two HPLC runs were conducted with 32 mg for each injection to afford \sim 6.6 mg of the enriched mixture. The mixture was purified by reversed-phase HPLC (YMC-ODS semi-preparative column, S-5, 120 Å with a guard column 50×20 mm) using 5–50% ACN in water with a linear gradient for 30

Figure 1. Structure of SCH 538415 (1).

^{*}Corresponding author. Tel.: +1-908-740-7290; fax: +1-908-740-7115; e-mail: min.chu@spcorp.com

min, 15 mL/min flow rate, UV detection at 220 nm to obtain \sim 0.8 mg of pure 1 as a red-orange powder.

LC-MS analysis interfaced with atmospheric pressure chemical ionization (APCI+) indicated the presence of a protonated molecular ion $(M+H)^+$ at m/z 299 and a bi-molecular ion $(2M + H)^+$ at m/z 597. The molecular weight of 1 was further confirmed by negative mode ionization (APCI-) to show a molecular ion (M⁻) at m/z 298. Elemental composition analysis revealed the molecular formula of 1 to be C₁₆H₁₄N₂O₄ based on HR-FABMS data (Calcd: m/z 299.1032 for $C_{16}H_{15}N_2O_4$. Found: m/z 299.1027). UV absorptions at 254, 268, 282, 302, 313, 348 and 435 nm suggested the presence of a highly conjugated chromophore related to anthraquinone class of compounds. The ¹H NMR spectrum of 1 (Table 1) was surprisingly simple with only three singlets at δ 2.57, 3.75 and 6.67 representing a double-bond attached CH₃, a nitrogen attached N-CH₃ and a vinyl CH, respectively. Since both singlets at δ 2.57 and 6.67 were slightly broad, further expansion of these signals revealed the presence of a very fine coupling constant with J=1.1 Hz. This observation suggested the allylic coupling of these two proton signals, therefore, the CH₃ group should be adjacent to the vinyl proton. In the ¹³C NMR spectrum (Table 1), a total of nine carbon resonances were observed including three carbonyls, one vinyl methine, three vinyl/aromatic quaternary carbons, one nitrogen attached methyl and one double bond attached methyl carbon. Among the three carbonyls, two signals at δ 178.7 and 181.3 represented typical 1,4-quinone carbonyl carbons, while the other signal at δ 161.3 was considered as an amide carbonyl carbon. The resonance at δ 34.0 was assigned to a nitrogen attached methyl group.

The molecular weight of 1 had an even number indicating the presence of two nitrogen atoms in the molecule, however, only one N-CH₃ carbon was observed. This evidence suggested that the structure of 1 is symmetrical. There are three possible arrangements of the diazaquinone carbon skeleton that can be proposed as either C_2 (2-fold) or i (inversion) symmetries. The arrangement of i symmetry for 1 indicated that two 1,4-quinone carbonyl carbons should be identical in the 13 C NMR spectrum of 1 due to the presence of a center of

Table 1. NMR spectral data of Sch 538415 (1)^a

No.	¹³ C (δ)	¹ H (δ)	НМВС
1, 1'	161.3 s ^b	_	_
2, 2'	126.4 d	6.67 br.s ^c	C1,C4,C9
2, 2' 3, 3'	148.9 s	_	´—´
4, 4'	116.8 s	_	_
5, 5'	142.8 s	_	_
6	178.7 s	_	_
7	181.3 s	_	_
8, 8'	34.0 q	3.75 s	C1,C5
9, 9'	22.5 q	2.57 br.s	C2,C3,C4

 $^{^{\}rm a}Recorded$ at 500 and 125 MHz for $^{\rm 1}H$ and $^{\rm 13}C$ NMR in CDCl₃, respectively.

inversion.⁸ However, the ¹³C NMR data of **1** revealed two 1,4-quinone carbonyl resonances at δ 178.7 and 181.3, therefore, the *i* symmetry is ruled out.

There are two configurations of C_2 symmetry for 1. Besides the 2-fold symmetry C_2 along y-axis as shown in Figure 2, the other configuration of C_2 symmetry for 1 can be arranged along with x-axis, in which two nitrogen atoms are located in the same ring of the molecule, This arrangement, again, did not agree with the ^{13}C NMR data of 1, because the two 1,4-quinone carbonyl carbons should be identical. Therefore, the C_2 symmetry along with x-axis for 1 is also excluded. The 2-fold symmetry C_2 along y-axis was considered as the best candidate to be assigned the diazaquinone skeleton of 1 with both two nitrogen atoms located at the same side of the molecule in order to match the molecular formula established by HR-FABMS, as well as the ^{13}C NMR data.

Detailed assignments of each carbon and proton were accomplished by analysis of 2D-NMR data including NOESY and HMBC experiments, as shown in Figure 2. Since the only NOE correlation between H-2 and CH₃-9 was observed, the amide carbonyl functionality was assigned to position-1 to separate the N-CH₃ from H-2 and CH₃-9 due to the lack of NOE correlations between N-CH₃ and H-2, as well as N-CH₃ and CH₃-9. The vinyl proton (H-2) and the methyl group (CH₃-9) should be assembled next to each other. In the HMBC spectrum, three-bond correlations of N-CH₃ to C-1 and C-5 confirmed the assignment of N-CH₃ at position-1. The correlation of H-2 to C-1 revealed that the vinylic proton was located at position-2. The other methyl group of (CH₃-9) was assigned to position 3 based on correlations of CH₃-9 to C-2, C-3 and C-4 without coupling to C-1.11 Structure elucidation of 1 was completed on the basis of all above 2D-NMR data. Therefore, the structure of 1 was proposed as shown in Figure

Additional supportive evidence from the literature search for the structure of **1** was found by a comparison to diazaquinomycin A and its semi-synthetic *N*-methyl derivative. ¹² Diazaquinomycin A possesses the same diazaquinone tricyclic carbon skeleton. The ¹³C NMR spectral data of the *N*-methyl derivative of diazaquino-

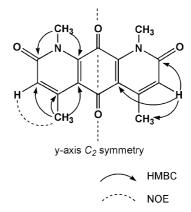


Figure 2. HMBC and NOE data of 1.

^bMultiplicity was determined by APT data.

^cFurther examination of both broad singlets revealed the presence of a small coupling between H-2 and H-9 with $J_{\rm H2,H9} = 1.1$ Hz.

mycin A were consistent with the data in Table 1 for 1. 12b To our best knowledge, only two related compounds reported previously in literature are diazaquinomycin A and nibomycin A. 13

Compound 1 showed inhibitory activity against the bacterial acyl carrier protein synthase with an IC₅₀ value of 4.19 μ M in vitro. In a cell-based agar diffusion assay, 1 also demonstrated antibacterial activity against *Staphylococcus aureus* (FDA 209P strain) demonstrating a 12 mm inhibition zone with 5 μ g on a paper disc (8-mm diameter).

Acknowledgements

The authors gratefully acknowledge Mr. P. Bartner for high resolution mass spectral data and Ms. D. Walsifer for preparation of this manuscript.

References and Notes

- 1. Richet, H.; Mohammed, J.; McDonald, L. C.; Jarvis, W. R. *Emerging Infect. Dis* **2001**, *7*, 319.
- 2. Courvalin, P.; Trien-Cuot, P. Clin. Infect. Dis. 2001, 33, S138.
- 3. Jackowski, S.; Murphy, C. M.; Cronan, J. E., Jr.; Rock, C. O. *J. Biol. Chem.* **1989**, *264*, 7624.
- 4. Banerjee, A.; Dubnau, E.; Quemard, A.; Balasubramanian, V.; Um, K. S.; Wilson, T.; Collin, D.; de Lisle, G.; Jacobs, W. R., Jr. *Science* **1994**, *263*, 227.
- Lambalot, R. H.; Walsh, C. T. J. Biol. Chem. 1995, 270, 24658
- Lambalot, R. H.; Walsh, C. T. Methods Enzymol. 1997, 279, 254.
- 7. Carreras, C. W.; Gehring, A. M.; Walsh, C. T.; Khosla, C. *Biochemstry* **1997**, *36*, 11757.
- 8. The arrangement of i symmetry for 1 with a center of inversion is shown below:

* Center of Inversion

9. The C_2 symmetry along with x-axis for 1 is illustrated as follows:

10. The other two possible arrangements shown below were also excluded due to the lack of NOE correlations in 1. In the case of **A**, the arrangement was incorrect because the NOE correlation of H-2 to N-CH₃ was not observed. In the case of **B**, the arrangement was also incorrect because the absence of the correlation of N-CH₃ to other methyl group (CH₃-9) in NOE experiments of 1.

NOE correlation

11. The arrangement of the methyl group (CH₃-9) next to the amide carbonyl did not agree with the HMBC data, which should observe the correlation of CH₃-9 to C-1 as depicted as follows:

12. (a) Omura, S.; Iwai, K.; Hinotozawa, K.; Tanaka, H.; Takahashi, Y.; Nakagawa, A. *J. Antibiot.* **1982**, *35*, 1425. (b) Omura, S.; Nakagawa, A.; Aoyama, H.; Hinotozawa, K.; Sano, H. *Tetrahedron Lett.* **1983**, *24*, 3643

Structure and ¹³C NMR data of *N*-methyl derivative of diazaquinomycin A

13. (a) Forbis, R. M.; Rinehart, R. L., Jr. *J. Am. Chem. Soc.* **1973**, *95*, 5003. (b) Lee, H.; Anderson, W. K. *Tetrahedron Lett.* **1990**, *31*, 4405.